New Lower Bounds for Permutation Codes Using Linear Block Codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Lower Bounds for Matching Vector Codes

A Matching Vector (MV) family modulo m is a pair of ordered lists U = (u1, . . . , ut) and V = (v1, . . . , vt) where ui, vj ∈ Znm with the following inner product pattern: for any i, 〈ui, vi〉 = 0, and for any i 6= j, 〈ui, vj〉 6 = 0. A MV family is called q-restricted if inner products 〈ui, vj〉 take at most q different values. Our interest in MV families stems from their recent application in t...

متن کامل

New lower bounds for constant weight codes

with M (which is expected). However, as M increases beyond Ahstrart -Some new lower bounds are given for A(n,4, IV), the maximum number of codewords in a binary code of length n, min imum distance 4, and constant weight IV. In a number of cases the results significantly 1.0 improve on the best bounds previously known. h=O 1 .

متن کامل

Circuit lower bounds and linear codes

In 1977, Valiant proposed a graph-theoretical method for proving lower bounds on algebraic circuits with gates computing linear functions. He used this method to reduce the problem of proving lower bounds on circuits with linear gates to proving lower bounds on the rigidity of a matrix, a notion that he introduced in that paper. The largest lower bound for an explicitly given matrix is due to J...

متن کامل

Trellis Complexity Bounds for Decoding Linear Block Codes

We consider the problem of finding a trellis for a finear block code that minimizes one or more measures of trellis complexity. The domain of optimization may be different permutations of the same code or different codes with the same parameters. Constraints on trellises, including relationships between the minimal trellis of a code and that of the dual code, are used to derive bounds on comple...

متن کامل

Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes

This paper presents essentially optimal lower bounds on the size of linear codes C : {0, 1} → {0, 1} which have the property that, for constants δ, > 0, any bit of the message can be recovered with probability 1 2 + by an algorithm reading only 2 bits of a codeword corrupted in up to δm positions. Such codes are known to be applicable to, among other things, the construction and analysis of inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2020

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2957354